CX3CR1 deficiency does not influence trafficking of adipose tissue macrophages in mice with diet-induced obesity.
نویسندگان
چکیده
Adipose tissue macrophages (ATMs) accumulate in fat during obesity and resemble foam cells in atherosclerotic lesions, suggesting that common mechanisms underlie both inflammatory conditions. CX(3)CR1 and its ligand fractalkine/CX(3)CL1 contribute to macrophage recruitment and inflammation in atherosclerosis, but their role in obesity-induced adipose tissue inflammation is unknown. Therefore, we tested the hypothesis that CX(3)CR1 regulates ATM trafficking to epididymal fat and contributes to the development of adipose tissue inflammation during diet-induced obesity. Cx(3)cl1 and Cx(3)cr1 expression was induced specifically in epididymal fat from mice fed a high-fat diet (HFD). CX(3)CR1 was detected on multiple myeloid cells within epididymal fat from obese mice. To test the requirement of CX(3)CR1 for ATM trafficking and obesity-induced inflammation, Cx(3)cr1(+/GFP) and Cx(3)cr1(GFP/GFP) mice were fed a HFD. Ly-6c(Low) monocytes were reduced in lean Cx(3)cr1(GFP/GFP) mice; however, HFD-induced monocytosis was comparable between strains. Total ATM content, the ratio of type 1 (CD11c(+)) to type 2 (CD206(+)) ATMs, expression of inflammatory markers, and T-cell content were similar in epididymal fat from obese Cx(3)cr1(+/GFP) and Cx(3)cr1(GFP/GFP) mice. Cx(3)cr1 deficiency did not prevent the development of obesity-induced insulin resistance or hepatic steatosis. In summary, our data indicate that CX(3)CR1 is not required for the recruitment or retention of ATMs in epididymal adipose tissue of mice with HFD-induced obesity even though CX(3)CR1 promotes foam cell formation. This highlights an important point of divergence between the mechanisms regulating monocyte trafficking to fat with obesity and those that contribute to foam cell formation in atherogenesis.
منابع مشابه
Synergistic Modulation of Inflammatory but not Metabolic Effects of High-Fat Feeding by CCR2 and CX3CR1
OBJECTIVE The purpose of the study was to explore the impact of dual targeting of C-C motif chemokine receptor-2 (CCR2) and fractalkine receptor (CX3CR1) on the metabolic and inflammatory consequences of obesity induced by a high-fat diet (HFD). METHODS C57BL/6J wild-type, Cx3cr1-/- , Ccr2-/- , and Cx3cr1-/- Ccr2-/- double-knockout male and female mice were fed a 45% HFD for up to 25 weeks st...
متن کاملGhrelin Does not Alter Aortic Intima-Media Thickness and Adipose Tissue Characteristics in Control and Obese Mice
Objective(s): Atherosclerosis is a chronic immune-inflammatory disease that generally leads to ischemic heart disease. Ghrelin has several modulatory effects on cardiovascular system. In this study, we investigated the effect of ghrelin on aortic intima-media thickness, size and the number of adipocyte cells in obese and control mice. Materials and Methods:This study was conducted on 24 male C...
متن کاملEffects of Endurance Training on the Expression of Cathepsin B (CTSB) and Cathepsin L (CTSL) genes in the Adipose Tissue of Mice with a High-Fat Diet
Introduction: In high-fat diet-induced obesity, the levels of cathepsin L (CTSL) and cathepsin B (CTSB) increase in adipocytes, resulting in insulin resistance in the adipose tissue. In this study, the preventive effect of endurance training on the gene expression of CTSL and CTSB was investigated in the adipose tissue of mice with a high-fat diet. Materials and Methods: Twenty-one male mice (a...
متن کاملBone Marrow p16INK4a-Deficiency Does Not Modulate Obesity, Glucose Homeostasis or Atherosclerosis Development
OBJECTIVE A genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the phenotype of human adipose tissue macroph...
متن کاملMetabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice
The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Obesity
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2012